Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134202, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38581873

RESUMO

The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum ß-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.

2.
Nat Commun ; 15(1): 2179, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467684

RESUMO

Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.


Assuntos
Ecossistema , Metagenoma , Silicatos , Metagenoma/genética , Metagenômica/métodos
3.
Environ Pollut ; 346: 123650, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402932

RESUMO

Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored. The results indicated that the PCBs were mainly dechlorinated via removing their double-flanked meta-chlorine, with their first-order kinetic constants following the order of PCB132 > PCB174 > PCB85 > PCB183 > PCB138. However, PCBs occurred great loss of stoichiometric mass balance during microbial transformation, suggesting the generation of other non-dehalogenation products and/or stable intermediates. The preferential transformation of (-)-atropisomers and generation of (+)-atropisomers were observed during PCB132 and PCB174 biotransformation with the enantiomeric enrichment factors of -0.8609 ± 0.1077 and -0.4503 ± 0.1334 (first half incubation times)/-0.1888 ± 0.1354 (second half incubation times), respectively, whereas no enantioselectivity occurred during PCB183 biotransformation. More importantly, although there was no carbon and chlorine isotope fractionation occurring for studied substrates, the δ13C values of dechlorination products, including PCB47 (-28.15 ± 0.35‰ âˆ¼ -27.77 ± 0.20‰), PCB91 (-36.36 ± 0.09‰ âˆ¼ -34.71 ± 0.49‰), and PCB149 (-28.08 ± 0.26‰ âˆ¼ -26.83 ± 0.10‰), were all significantly different from those of their corresponding substrates (PCB85: -30.81 ± 0.02‰ âˆ¼ -30.22 ± 0.21‰, PCB132: -33.57 ± 0.15‰ âˆ¼ -33.13 ± 0.14‰, and PCB174: -26.30 ± 0.09‰ âˆ¼ -26.01 ± 0.07‰), which further supported the generation of other non-dehalogenation products and/or stable intermediates with enrichment or depletion of 13C. These findings provide deeper insights into the anaerobic microbial transformation behaviors of PCBs.


Assuntos
Chloroflexi , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Biodegradação Ambiental , Cloro/metabolismo , Anaerobiose , Biotransformação , Carbono/metabolismo , Isótopos/metabolismo , Dehalococcoides
4.
Environ Sci Pollut Res Int ; 31(11): 17472-17480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342836

RESUMO

China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.


Assuntos
Retardadores de Chama , Hidrocarbonetos Clorados , Compostos Policíclicos , Poluentes Químicos da Água , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise , Rios , China
5.
Sci Total Environ ; 915: 170108, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232851

RESUMO

Organophosphate triesters (tri-OPEs) are a kind of widespread contaminants in the world, particularly in China, which is a major producer and user of tri-OPEs. However, tri-OPE pollution in urban river sediments in China remains unclear. In current work, we carried out the first nationwide investigation to comprehensively monitor 10 conventional and five emerging tri-OPEs in sediments of 173 black-odorous urban rivers throughout China. Concentrations of 10 conventional and five emerging tri-OPEs were 3.8-1240 ng/g dw (mean: 253 ng/g dw) and 0.21-1107 ng/g dw (68 ng/g dw), respectively, and significantly differed among the cities sampled but generally decreased from Northeast and East China to Central and West China. These spatial patterns suggest that tri-OPE pollution was mainly from local sources and was controlled by the industrial and economic development levels in these four areas, as indicated by the significant correlations between tri-OPE concentrations and gross domestic production, gross industrial output, and daily wastewater treatment capacity. Although the tri-OPE composition varied spatially at different sites, which indicated different tri-OPE input patterns, it was commonly dominated by tris(2-chloroethyl) phosphate, tris(2-ethylhexyl) phosphate, and tris(1-chloro-2-propyl) phosphate (conventional tri-OPEs) and bisphenol A-bis(diphenyl phosphate) and isodecyl diphenyl phosphate (emerging tri-OPEs). A risk assessment indicated that tri-OPEs in most sampling sediments had a low to moderate risk to aquatic organisms.

6.
Sci Total Environ ; 907: 168057, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37898190

RESUMO

Hexabromocyclododecanes (HBCDs) have become a global pollution problem, particularly in China-a major producer and user of HBCDs. However, little is known about the HBCD pollution status in urban rivers nationwide in China. In this study, we comprehensively investigated the pollution characteristics of HBCDs in 173 sediment samples from black-odorous urban rivers across China. Total HBCD concentrations ranged from not-detected to 848 ng/g dw, showing significant differences among the various sampling cities, but generally increasing from west to east China. This distribution pattern of HBCDs was strongly associated with the local industrial output, gross domestic product, and daily wastewater treatment capacity. α-HBCD was the predominant diastereoisomer in most sediments, with an average proportion of 63.8 ± 18.8 %, followed by γ-HBCD (23.8 ± 19.5 %) and ß-HBCD (12.4 ± 6.49 %), showing a significant increase of the α-HBCD proportions relative to those in HBCD commercial mixtures and an opposite trend for that of γ-HBCD. These results suggested that HBCDs might undergo isomerization from γ- to α-HBCD and biotic/abiotic degradation with preference for γ-HBCD. Of these conversions, the microbial degradation of HBCDs was further verified by the preferential transformation of (-)-α-, (+)-ß-, and (-)-γ-HBCDs and the detection of HBCD-degrading bacteria, including Dehalococcoides, Bacillus, Sphingobium, and Pseudomonas. A risk assessment indicated that HBCDs pose low to moderate risks to aquatic organisms in most black-odorous urban river sediments.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Rios , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Hidrocarbonetos Bromados/análise , China , Medição de Risco , Retardadores de Chama/análise
7.
Environ Sci Technol ; 57(45): 17338-17352, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902991

RESUMO

Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.


Assuntos
Chloroflexi , Cloreto de Vinil , Bactérias , Biodegradação Ambiental , Interações Microbianas
8.
Environ Sci Technol ; 57(37): 14036-14045, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37665676

RESUMO

Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.


Assuntos
Poluentes Ambientais , Tricloroetileno , Cloreto de Vinil , Solo , Substâncias Húmicas , Acetileno , Halogenação
9.
Bioresour Technol ; 388: 129775, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722539

RESUMO

Microorganisms play key roles in the conversion of organic matter in foodwaste. However, both the microbially-mediated element (carbon/C and nitrogen/N) flows and associated microbial communities in foodwaste treatment plants (FWTPs) remain unclear. This study collected samples of different foodwaste treatment units from five full-scale FWTPs to analyze the C/N flows and microbial communities in foodwaste treatment processes. Results showed that 39.8-45.0% of organic carbon in foodwaste was converted into biogas. Hydrolytic acidogenic bacteria (e.g., Lactobacillus and Limosilactobacillus) and eukaryota (e.g., Cafeteriaceae, Saccharomycetales, and Agaricomycetes) were more abundant in feedstock and pretreatment units. Redundancy analyses showed that acidogens were major players in the transformation of foodwaste organic matter. Populations of W27 and Tepidanaerobacter were major contributors to the difference in conversion of C/N in these FWTPs. This study could support foodwaste treatment efficiencies improvement by providing insights into C/N flows and associated microbiota in FWTPs.

10.
Environ Pollut ; 334: 122111, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392866

RESUMO

Triclosan (TCS), a synthetic and broad-spectrum antimicrobial agent, is frequently detected in various environmental matrices. A novel TCS degrading bacterial strain, Burkholderia sp. L303, was isolated from local activated sludge. The strain could metabolically degrade TCS up to 8 mg/L, and optimal conditions for TCS degradation were at temperature of 35 °C, pH 7, and an increased inoculum size. During TCS degradation, several intermediates were identified, with the initial degradation occurring mainly through hydroxylation of aromatic ring, followed by dechlorination. Further intermediates such as 2-chlorohydroquinone, 4-chlorocatechol, and 4-chlorophenol were produced via ether bond fission and C-C bond cleavage, which could be further transformed into unchlorinated compounds, ultimately resulting in the complete stoichiometric free chloride release. Bioaugmentation of strain L303 in non-sterile river water demonstrated better degradation than in sterile water. Further exploration of the microbial communities provided insights into the composition and succession of the microbial communities under the TCS stress as well as during the TCS biodegradation process in real water samples, the key microorganisms involved in TCS biodegradation or showing resistance to the TCS toxicity, and the changes in microbial diversity related to exogenous bioaugmentation, TCS input, and TCS elimination. These findings shed light on the metabolic degradation pathway of TCS and highlight the significance of microbial communities in the bioremediation of TCS-contaminated environments.


Assuntos
Anti-Infecciosos , Triclosan , Triclosan/análise , Biodegradação Ambiental , Redes e Vias Metabólicas , Água
11.
Chemosphere ; 338: 139462, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437623

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has significantly increased the demand of disinfectant use. Chloroxylenol (para-chloro-meta-xylenol, PCMX) as the major antimicrobial ingredient of disinfectant has been widely detected in water environments, with identified toxicity and potential risk. The assessment of PCMX in domestic wastewater of Macau Special Administrative Region (SAR) showed a positive correlation between PCMX concentration and population density. An indigenous PCMX degrader, identified as Rhodococcus sp. GG1, was isolated and found capable of completely degrading PCMX (50 mg L-1) within 36 h. The growth kinetics followed Haldane's inhibition model, with maximum specific growth rate, half-saturation constant, and inhibition constant of 0.38 h-1, 7.64 mg L-1, and 68.08 mg L-1, respectively. The degradation performance was enhanced by optimizing culture conditions, while the presence of additional carbon source stimulated strain GG1 to alleviate inhibition from high concentrations of PCMX. In addition, strain GG1 showed good environmental adaptability, degrading PCMX efficiently in different environmental aqueous matrices. A potential degradation pathway was identified, with 2,6-dimethylhydroquinone as a major intermediate metabolite. Cytochrome P450 (CYP450) was found to play a key role in dechlorinating PCMX via hydroxylation and also catalyzed the hydroxylated dechlorination of other halo-phenolic contaminants through co-metabolism. This study characterizes an aerobic bacterial pure culture capable of degrading PCMX metabolically, which could be promising in effective bioremediation of PCMX-contaminated sites and in treatment of PCMX-containing waste streams.


Assuntos
COVID-19 , Desinfetantes , Rhodococcus , Humanos , Rhodococcus/metabolismo , Xilenos/metabolismo , Biodegradação Ambiental , Desinfetantes/metabolismo
12.
Water Res ; 243: 120360, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481998

RESUMO

1,2,5,6-tetrabromocyclooctane (TBCO) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), as safer alternatives to traditional brominated flame retardants, have been extensively detected in various environmental media and pose emerging risks. However, much less is known about their fate in the environment. Anaerobic microbial transformation is a key pathway for the natural attenuation of contaminants. This study investigated, for the first time, the microbial transformation behaviors of ß-TBCO and DPTE by Dehalococcoides mccartyi strain CG1. The results indicated that both ß-TBCO and DPTE could be easily transformed by D. mccartyi CG1 with kobs values of 0.0218 ± 0.0015 h-1 and 0.0089 ± 0.0003 h-1, respectively. In particular, ß-TBCO seemed to undergo dibromo-elimination and then epoxidation to form 4,5-dibromo-9-oxabicyclo[6.1.0]nonane, while DPTE experienced debromination at the benzene ring (ortho-bromine being removed prior to para-bromine) rather than at the carbon chain. Additionally, pronounced carbon and bromine isotope fractionations were observed during biotransformation of ß-TBCO and DPTE, suggesting that C-Br bond breaking is the rate-limiting step of their biotransformation. Finally, coupled with identified products and isotope fractionation patterns, ß-elimination (E2) and Sn2-nucleophilic substitution were considered the most likely microbial transformation mechanisms for ß-TBCO and DPTE, respectively. This work provides important information for assessing the potential of natural attenuation and environmental risks of ß-TBCO and DPTE.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Hidrocarbonetos Bromados/química , Cinética , Anaerobiose , Bromo , Biotransformação , Isótopos
13.
J Hazard Mater ; 457: 131781, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315412

RESUMO

Black-odorous urban rivers can serve as reservoirs for heavy metals and other pollutants, in which sewage-derived labile organic matter triggering the water blackening and odorization largely determine the fate and ecological impact of the heavy metals. Nonetheless, information on the pollution and ecological risk of heavy metals and their reciprocal impact on microbiome in organic matter-polluted urban rivers remain unknown. In this study, sediment samples were collected and analyzed from 173 typical black-odorous urban rivers in 74 cities across China, providing a comprehensive nationwide assessment of heavy metal contamination. The results revealed substantial contamination levels of 6 heavy metals (i.e., Cu, Zn, Pb, Cr, Cd, and Li), with average concentrations ranging from 1.85 to 6.90 times higher than their respective background values in soil. Notably, the southern, eastern, and central regions of China exhibited particularly elevated contamination levels. In comparison to oligotrophic and eutrophic waters, the black-odorous urban rivers triggered by organic matter exhibited significantly higher proportions of the unstable form of these heavy metals, indicating elevated ecological risks. Further analyses suggested the critical roles of organic matter in shaping the form and bioavailability of heavy metals through fueling microbial processes. In addition, most heavy metals had significantly higher but varied impact on the prokaryotic populations relative to eukaryotes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Medição de Risco , Metais Pesados/análise , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos
14.
Microbiol Spectr ; 11(3): e0452822, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154752

RESUMO

Biodiversity is vital for ecosystem functions and services, and many studies have reported positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships in plant and animal systems. However, if the BEF relationship exists and how it evolves remains elusive in microbial systems. Here, we selected 12 Shewanella denitrifiers to construct synthetic denitrifying communities (SDCs) with a richness gradient spanning 1 to 12 species, which were subjected to approximately 180 days (with 60 transfers) of experimental evolution with generational changes in community functions continuously tracked. A significant positive correlation was observed between community richness and functions, represented by productivity (biomass) and denitrification rate, however, such a positive correlation was transient, only significant in earlier days (0 to 60) during the evolution experiment (180 days). Also, we found that community functions generally increased throughout the evolution experiment. Furthermore, microbial community functions with lower richness exhibited greater increases than those with higher richness. Biodiversity effect analysis revealed positive BEF relationships largely attributable to complementary effects, which were more pronounced in communities with lower richness than those with higher richness. This study is one of the first studies that advances our understanding of BEF relationships and their evolutionary mechanisms in microbial systems, highlighting the crucial role of evolution in predicting the BEF relationship in microbial systems. IMPORTANCE Despite the consensus that biodiversity supports ecosystem functioning, not all experimental models of macro-organisms support this notion with positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships reported. The fast-growing, metabolically versatile, and easy manipulation nature of microbial communities allows us to explore well the BEF relationship and further interrogate if the BEF relationship remains constant during long-term community evolution. Here, we constructed multiple synthetic denitrifying communities (SDCs) by randomly selecting species from a candidate pool of 12 Shewanella denitrifiers. These SDCs differ in species richness, spanning 1 to 12 species, and were monitored continuously for community functional shifts during approximately 180-day parallel cultivation. We demonstrated that the BEF relationship was dynamic with initially (day 0 to 60) greater productivity and denitrification among SDCs of higher richness. However, such pattern was reversed thereafter with greater productivity and denitrification increments in lower-richness SDCs, likely due to a greater accumulation of beneficial mutations during the experimental evolution.


Assuntos
Biodiversidade , Ecossistema , Animais , Biomassa , Plantas
15.
Proc Natl Acad Sci U S A ; 120(20): e2220725120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155857

RESUMO

Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.


Assuntos
Sulfatos , Enxofre , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo , Óxidos de Enxofre
16.
Microbiome ; 11(1): 71, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020239

RESUMO

BACKGROUND: Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS: Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS: In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.


Assuntos
Desulfovibrio , Microbiota , Metano/metabolismo , Nitrogênio/metabolismo , Enxofre/metabolismo , Sulfetos , Sedimentos Geológicos/microbiologia
17.
Glob Chang Biol ; 29(2): 391-403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203244

RESUMO

Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.


Assuntos
Microbiota , Rios , Cidades , Água , China
18.
Chemosphere ; 313: 137454, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470357

RESUMO

Chlorinated paraffins (CPs) were massively produced for varied industrial purposes, of which improper handling and consequent environmental release resulted in worldwide contamination. The present study investigated the occurrence and spatial distribution of short- and medium-chain chlorinated paraffins (SCCP/MCCPs) in 171 sediment samples from black-odorous urban rivers across China. Total SCCP and MCCP concentrations ranged from 8.3 to 9.4 × 104 (median: 1.1 × 103) ng/g dw, and from not-detected-value to 1.0 × 106 (median: 1.3 × 104) ng/g dw, respectively. No clear spatial distribution of SCCPs and MCCPs was observed since black-odorous urban rivers were polluted by point-sources of the SCCP/MCCPs. Significant positive correlations were identified between SCCP/MCCPs and total organic carbon, and between SCCP/MCCPs and other persistent organic matter, including polybrominated diethyl ethers, polychlorinated biphenyls, antibiotics, and plasticizers. The average ratios of MCCPs to SCCPs in most samples were divided into 11 and 16, implying the manufacturing and use of at least two types of CP technical mixtures in China. The composition of SCCP/MCCPs were similar to that in their commercial products. Ecological risk assessments by two approaches, including the Federal Environmental Quality Guidelines and Risk Quotient, both revealed that SCCP/MCCP in surface sediments confer an ecological risk. ENVIRONMENTAL IMPLICATION: SCCPs and MCCPs can be considered "hazardous materials" because of their massive production and their potential persistence, long-distance transfer, bioaccumulation potential, and toxicity. This research conducted a comprehensive study on SCCP/MCCP in black-odorous urban river sediments across China and revealed their environmental risk, which may improve understanding of SCCP/MCCP contamination characteristics.


Assuntos
Hidrocarbonetos Clorados , Hidrocarbonetos Clorados/análise , Parafina/análise , Rios , Monitoramento Ambiental/métodos , China , Medição de Risco
19.
Water Res ; 226: 119228, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244139

RESUMO

Selective production of carboxylic acids (CAs) from mixed culture fermentation remains a difficult task in organic waste valorization. Herein, we developed a facile and sustainable carbon loop strategy to regulate the fermentation micro-environment and steer acidogenesis towards selective butyric acid production. This new ion substitution electrodialysis-anaerobic membrane bioreactor (ISED-AnMBR) integrated system demonstrated a high butyric acid production at 11.19 g/L with a mass fraction of 76.05%. In comparison, only 1.04 g/L with a mass fraction of 30.56% was observed in the uncoupled control reactor. The carbon recovery reached a maximum of 96.09% with the assistance of ISED. Inorganic carbon assimilation was believed to be an important contributor, which was verified by 13C isotopic tracing. Microbial community structure shows the dominance of Clostridia (80.16%) in the unique micro-environment (e.g., pH 4.80-5.50) controlled by ISED, which is believed beneficial to the growth of such fermentative bacteria with main products of butyric acid and acetic acid. In addition, the emergence of chain elongators such as Clostridium sensu stricto 12 was observed to have a great influence on butyric acid production. This work provides a new approach to generate tailored longer chain carboxylic acids from organic waste with high titer thus contributing to a circular economy.


Assuntos
Ácido Acético , Reatores Biológicos , Ácido Butírico , Reatores Biológicos/microbiologia , Fermentação , Carbono , Concentração de Íons de Hidrogênio
20.
Sci Total Environ ; 844: 157195, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35810888

RESUMO

The combination of microbial reductive dechlorination and aerobic oxidation (RD-AO) process was proposed to be a promising strategy for extensive bioremediation of highly chlorinated polychlorinated biphenyls (PCBs). Nonetheless, experimental evidence on the impact of the RD on subsequent AO in anaerobic-aerobic two-stage treatment remains scarce. The present study applied stable-isotope probing (SIP) to explore the RD-AO mediated degradation of PCBs in an e-waste-contaminated soil. The RD-AO treatment resulted in 37.1 % and 48.2 % degradation of PCB180 and PCB9, respectively, while the PCB9 degradation efficiency decreased compared to the sole AO (81.2 %). The inhibition of PCB aerobic degradation might be caused by the alteration of aerobic bacterial community, which was proved by a higher abundance of anaerobic bacteria and a lower abundance of aerobic bacteria being observed in the aerobic stage of RD-AO. Further evidence was obtained using DNA-SIP that the anaerobic stage altered the PCB degraders' community structures and changed three of the five degraders. There were four lineages (Arenimonas, Steroidobacter, Sulfurifustis, and Thermoanaerobacterales) identified as PCB degraders for the first time. Interestingly, three of them were found in RD-AO microcosm, suggesting that anaerobic-aerobic two-stage treatment can recruit novel bacteria involved in PCBs aerobic degradation. The present study provided novel insight into the synergistic integration of anaerobic and aerobic processes for extensive degradation of highly chlorinated PCBs.


Assuntos
Resíduo Eletrônico , Bifenilos Policlorados , Anaerobiose , Bactérias Aeróbias/metabolismo , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Bifenilos Policlorados/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...